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6CCP3212

Physical Constants

Permittivity of free space ε0 = 8.854× 10−12 F m−1

Permeability of free space µ0 = 4π × 10−7 H m−1

Speed of light in free space c = 2.998× 108 m s−1

Gravitational constant G = 6.673× 10−11 N m2 kg−2

Elementary charge e = 1.602× 10−19 C

Electron rest mass me = 9.109× 10−31 kg

Unified atomic mass unit mu = 1.661× 10−27 kg = 931.494 MeV c−2

Proton rest mass mp = 1.673× 10−27 kg

Neutron rest mass mn = 1.675× 10−27 kg

Planck constant h = 6.626× 10−34 J s

Boltzmann constant kB = 1.381× 10−23 J K−1 = 8.617 ×10−11 MeV K−1

Stefan-Boltzmann constant σ = 5.670× 10−8 W m−2 K−4

Gas constant R = 8.314 J mol−1 K−1

Avogadro constant NA = 6.022× 1023 mol−1

Molar volume of ideal gas at STP = 2.241× 10−2 m3

One standard atmosphere P0 = 1.013× 105 N m−2

SEE NEXT PAGE
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Useful Information

Maxwell Relations (
∂P

∂T

)
V

=

(
∂S

∂V

)
T

,

(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

,

(
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

,

(
∂V

∂S

)
P

=

(
∂T

∂P

)
S

.

Fundamental Equation of Thermodynamics

dE = TdS − PdV + µdN

Thermodynamic Potentials

F = E − TS , Φ = E − TS + PV , H = E + PV .

with differentials

dF = −SdT − PdV + µdN , dΦ = −SdT + V dP + µdN , dH = TdS + V dP + µdN .

Heat Capacities

CV = T

(
∂S

∂T

)
V

=

(
∂E

∂T

)
V

, CP = T

(
∂S

∂T

)
P

=

(
∂H

∂T

)
P

.

Microcanonical Ensemble Entropy
S = kb ln Ω

Canonical Partition Function and formulas

Z =
∑
r

e−βEr , Pr =
1

Z
e−βEr , 〈X〉 =

∑
r

PrXr ,

F = −kbT lnZ , S = kb
∂

∂T
(T lnZ) , Mean Energy 〈E〉 = −

(
∂ lnZ

∂β

)

SEE NEXT PAGE
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Grand Canonical Ensemble Partition Function

Z =
∑
r

e−β(Er−µNr) ,

Mean Energy 〈E〉+ µ〈N〉 = −
(
∂ lnZ
∂β

)
, Mean Particle Number 〈N〉 =

1

β

(
∂ lnZ
∂µ

)
.

Fermi-Dirac Distribution

〈Nn〉 =
1

eβ(En−µ) + 1
.

Bose-Einstein Distribution

〈Nn〉 =
1

eβ(En−µ) − 1
.

Thermal de Broglie wavelength

λ =

√
2π~2

mkbT
.

Stirling’s Formula
lnN ! ≈ N lnN −N , N � 1

Polylog integrals ∫ ∞
0

xn−1

ex + 1
dx = (1− 21−n)Γ(n)ζ(n) , (n > 0),

and ∫ ∞
0

xn−1

ex − 1
dx = Γ(n)ζ(n) , (n > 1),

with Riemann Zeta function

ζ(p) ≡
∞∑
n=1

1

np
,

and the Gamma function

Γ(n) ≡
∫ ∞

0

xn−1e−xdx .

The Gamma function for n > 0 integers is

Γ(n) = (n− 1)! , n ∈ N − {0} .

SEE NEXT PAGE
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Common values for half-integer Gamma functions

Γ(1/2) =
√
π , Γ(3/2) =

√
π

2
, Γ(5/2) =

3
√
π

4
, Γ(7/2) =

15
√
π

8
.

and Zeta functions

ζ(3/2) = 2.612 , ζ(2) =
π2

6
, ζ(5/2) = 1.341 , ζ(3) = 1.202 , ζ(7/2) = 1.127 .

Gaussian Integral

I =

∫ ∞
−∞

e−ax
2

dx =

√
π

a
.

Geometric Sum
n=∞∑
n=0

xn =
1

1− x
, |x| < 1 .

A derivative identity between x, y and z with a single constraint x(y, z)(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1

Differential transform from f(x, y) → f(x, z) for a function f(x, y) with a constraint x =
x(y, z) (

∂f

∂x

)
z

=

(
∂f

∂x

)
y

+

(
∂f

∂y

)
x

(
∂y

∂x

)
z

.

SEE NEXT PAGE
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SECTION A

Answer SECTION A in an answer book.
Answer as many parts of this section as you wish. Your total mark for this

section will be capped at 40.

1.1 State the zeroth, 1st and 2nd Laws of Classical Thermodynamics.

[3 marks]B

1.2 State what is meant by the Thermodynamic limit of statistical mechanics.

[3 marks]B

1.3 State which of the following are exact differentials. Integrate the equation if it is
exact.

(i) dG(x, y) = (2xeyx + yx2eyx)dx+ x3eyxdy.

(ii) dG(x, y, z) = y2z−1dx+ 2yxz−1dy − xy2z−2dz.

(iii) dG(x, y) = −2ydx+ 2xdy.

[9 marks]P

1.4 A thermodynamic system is described by the Dieterici equation of state given by

P =
kbTN

V − b
e
− aN
kbTV .

For fixed N , a > 0, b > 0 and by arguing that the system has to be stable under
isothermal compression, show that

kbT >
aN(V − b)

V 2
.

[6 marks]U

SEE NEXT PAGE
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1.5 Recall that the entropy of a system can be written in the Shannon form as

S = −kb
∑
i

Pi lnPi

where Pi is the probability of the i-th microstate occuring. Calculate the entropy of
a fair 6-sided die.

Suppose the die is loaded (i.e. not a fair die) such that the chances of getting a 6 at
every throw is 50%, and with the other 50% of the time evenly distributed among
the other numbers. Show that the entropy is

S = kb ln(2
√

5) .

[8 marks] P

1.6 Starting from the fundamental equation of thermodynamics, and by using T and V
as our state variables, show that(

∂E

∂V

)
T

= −P + T

(
∂P

∂T

)
V

.

Suppose for a particular gas, the energy only depends on T and not V , show that its
equation of state is given by

P = f(V )T .

where f(V ) is any function of constants and V .

[8 marks]U

SEE NEXT PAGE
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1.7 The Maxwell-Boltzmann distribution of a gas at temperature T is given by

f(v)e−mv
2/2kbT =

√
2

π

(
m

kbT

)3/2

v2e−mv
2/2kbT ,

where the absolute velocity is

v =
√
v2
x + v2

y + v2
z .

Calculate (i) 〈vx〉 (ii) 〈v2
y〉 (iii) 〈v2

xv
2
yv

2
z〉.

You may use any theorems without proof.

[8 marks]B

1.8 The density of states for a bosonic quantum mechanical system with vanishing chem-
ical potential µ = 0 is given by

g(E) = αE5/2 .

where α > 0 is a dimensionful constant. Calculate the mean energy 〈E〉 of this
system for a canonical ensemble with fixed β. You may leave the final answer in
terms of the Γ and ζ functions.

[8 marks]B

1.9 Consider the following Landau Functional

F (T ) = F0(T ) + α(T − Tc)m2 + bm4 ,

where Tc is the critical temperature, and α > 0, b > 0 are constants. Find the
equilibrium points of this functional. Plot F (T ) for the two cases where T < Tc
and T > Tc. What is the order of the phase transition that this functional models?
Justify your assertion.

[7 marks]B

SEE NEXT PAGE
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Solutions

1.1 Bookwork

1.2 N →∞ and V →∞ with N/V →const.

1.3 (i) Exact. G(x, y) = x3eyx (ii) Exact. G(x, y, z) = xy2z−1. (iii) Inexact.

1.4 Stability of (from bookwork) implies that
(
∂P
∂V

)
T
< 0, or(

∂P

∂V

)
T

=
kbTN

V − b

(
− 1

V − b
+

aN

kbTV 2

)
e
− aN
kbTV . (1)

which gives the required condition.

1.5 The probability of each microstate in a n-th sided die is Pi = 1/n, so S = −kb
∑

i Pi lnPi =
kbn× (1/n) lnn = kb lnn. For 6 sided die this is S = kb ln 6. For the loaded die P6 =
1/2 and Pi = 1/10 for i = 1, 2, 3, 4, 5, then S = −kb(0.5 ln(1/2) + (5/10) ln(1/10)) =
kb ln 2

√
5.

1.6 First part is bookwork. Using the identity in the Rubric, with f → E, x→ V , y → S
and z → T , we get (

∂E

∂V

)
T

=

(
∂E

∂V

)
S

+

(
∂E

∂S

)
V

(
∂S

∂V

)
T

(2)

But now from the fundamental equation dE = TdS − PdV , i.e.(
∂E

∂S

)
V

= T ,

(
∂E

∂V

)
S

= −P (3)

gets us (
∂E

∂V

)
T

= −P + T

(
∂S

∂V

)
T

, (4)

and then using the Maxwell relation
(
∂S
∂V

)
T

=
(
∂P
∂T

)
V(

∂E

∂V

)
T

= −P + T

(
∂P

∂T

)
V

., (5)

If
(
∂E
∂V

)
T

= 0, then P = T
(
∂P
∂T

)
V

, and the solution for this equation is P = f(V )T .

1.7 (i) 0 by symmetry (ii) kbT/m by equipartition theorem 〈mv2/2〉 = (1/2)kbT (iii)
(kbT/m)3.
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1.8 The integral is

〈E〉 =

∫
g(E)E

eβE − 1
dE = β−9/2α

∫
x7/2

ex − 1
dx = β−9/2αΓ(9/2)ζ(9/2) . (6)

1.9 Finding the minima by ∂F/∂m = 0, gets us the equilibrium solutions m = 0, m =
±
√
−a/2b where a = α(T−Tc). For the system to model a 2nd order phase transition,

∂2F/∂T 2 must be discontinuous at T = Tc, and this is true since

lim
T<→Tc

∂2F

∂T 2
− lim

T>→Tc

∂2F

∂T 2
=
α2

2b
, (7)

and the system is discontinuous at 2nd order.
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SECTION B - Answer TWO questions
Answer SECTION B in an answer book

2) A simple magnetic system can be described by two independent state variables. These
state variables include the magnetic field H, the temperature T , the internal energy
E, the entropy S and the magnetization M defined by

M ≡ µ̄N
V

,

where µ̄N is the total mean magnetic moment of the magnet and V is the volume of
the system. (Note that V is not a state variable of magnetic systems.)

The 1st Law of Thermodynamics for the system is given by

dE = d̄Q+HdM .

(a) For the state variables mentioned above (H, S, T , E and M), which are extensive
and which are intensive?

[4 marks] U

(b) The heat capacities at constant M and H for a magnetic system can be defined as

CM ≡
(
d̄Q

dT

)
M

, CH ≡
(
d̄Q

dT

)
H

,

respectively. By using T and M as the pair of independent state variables, show that

CM =

(
∂E

∂T

)
M

and ,

CH = CM +

((
∂E

∂M

)
T

−H
)(

∂M

∂T

)
H

.

Hence prove the following differential relationship

dE = CMdT +

[
CH − CM(

∂M
∂T

)
H

+H

]
dM .

[10 marks] U

QUESTION CONTINUES ON NEXT PAGE

SEE NEXT PAGE
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(c) A Curie magnet is a magnetic system described by the equation of state

M = a
H

T
,

and the relationships (
∂E

∂M

)
T

= 0 , CM = bT ,

where a > 0 and b > 0 are positive definite constants.

Assuming that E(T = 0,M = 0) = 0, find CH(T,M) and E(T,M) for a Curie
magnet.

[10 marks] U

(d) Using your results in (c) and (d), show that for an adiabatic change (i.e. d̄Q = 0),
the temperature changes with respect to the magnetization as

dT

dM
=
M

ab
.

[6 marks] U

SEE NEXT PAGE
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Solution 2

(a) M and T are intensive, S, H and E are extensive.

(b) From E(T,M)

dE =

(
∂E

∂T

)
M

dT +

(
∂E

∂M

)
T

dM , (8)

and combining with the first law in (b) we get

d̄Q = dE −HdM =

(
∂E

∂T

)
M

dT +

((
∂E

∂M

)
T

−H
)
dM . (9)

Then the heat capacities follows from the above

CM =

(
d̄Q

dT

)
M

=

(
∂U

∂T

)
M

, (10)

and

CH =

(
d̄Q

dT

)
H

= CM +

((
∂E

∂M

)
T

−H
)(

∂M

∂T

)
H

. (11)

Hence

CH − CM =

((
∂E

∂M

)
T

−H
)(

∂M

∂T

)
H

(12)

which rearranging gets us (
∂E

∂M

)
T

=
CH − CM(

∂M
∂T

)
H

+H . (13)

Plugging this back into the dU relationship we get the required relationship.

(c) For E(T,M), from

dE =

(
∂E

∂T

)
M︸ ︷︷ ︸

CM=bT

dT +

(
∂E

∂M

)
T︸ ︷︷ ︸

0

dM (14)

Integrating

E(T,M) =

∫ T

0

bT ′dT ′ =
1

2
bT 2 + f(M) . (15)

But from
(
∂E
∂M

)
T

= f ′(M) = 0 (given), f(M) = α where α is some constant. Hence

E(T,M) = 1
2
bT 2 + α. But now imposing E(T = 0,M = 0) = 0, we see that α = 0.

Thus the final answer is E(T ) = 1
2
bT 2.

13



For CH , we calculate (
∂M

∂T

)
H

= −aH
T 2

(16)

using the equation of state M = aH/T . Then using the E(T ) = 1
2
bT 2 above,(

∂E
∂M

)
T

= 0 and hence using the result in (c),

CH = CM + (0−H)(−aH
T 2

) = bT +
M2

a
. (17)

(d) Using the first law with d̄Q = 0, we get from (c)

dT

dM
= −

(
∂E
∂M

)
T
−H

CM
(18)

and plugging in our results from (d) for the Curie magnet we immediately get
dT/dM = M/ab.
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3) A gas of N indistinguishable and non-interacting atoms is held in a spherically sym-
metric neutral atom trap with potential V (r) = ar where r =

√
x2 + y2 + z2, such

that the energy per particle is given by the Hamiltonian

H =
p2

2m
+ V (r) ,

where m is the mass of each particle. The constant a > 0 denotes the strength of the
potential. The gas is in thermal equilibrium with temperature T .

(a) Is the potential attractive or repulsive? Explain your answer.

[4 marks] P

(b) Show that the single particle partition function has the following form

Z1 = ATαaβ ,

where A, α and β are constants. Find α and β.

(Hint : Recall that
∫∞
−∞ f(r)dxdydz = 4π

∫∞
0
r2f(r)dr.)

[8 marks] P

(c) Using your result in (b), write down the partition function for the system of N
particles, and derive the entropy S of the system as a function of N , Z1 and T .
(Hint :You may find Stirling’s formula useful.)

[6 marks] P

(d) Calculate the mean energy per particle of the system 〈E〉. Verify that this result is
consistent with the Equipartition theorem.

[6 marks] U

(e) The gas can be cooled if the potential is lowered reversibly by decreasing the strength
of the potential a while no heat is allowed to be exchanged with the surroundings,
d̄Q = 0. Under these conditions, show that T (a) is a power law of the form

T = T0

(
a

a0

)γ
,

with initial values T0 and a0. Find γ. (Hint :You may find your result in (c) useful.)

[6 marks] U

SEE NEXT PAGE
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Solution 3

(a) Since the energy E of the particle increases as a function of r for a > 0, the probability
of the particle P ∝ e−βE decreases, hence the particle is most likely to be found in
at the origin r = 0. Thus it is an attractive potential.

(b) The single particle partition function is

Z1 =
1

(2π~)3

∫
dpxdpydpze

−β(p2x+p2y+p2z︸ ︷︷ ︸
(2πm/β)3/2

∫
dxdydze−βar︸ ︷︷ ︸∫∞
0 4πr2e−βardr

(19)

=
1

(2π~)3

(
2πm

β

)3/2

× 4π

(
1

aβ

)3 ∫ ∞
0

x2e−xdx︸ ︷︷ ︸
2

(20)

=
8π(2πm)3/2k3

b

(2π~)3
T 9/2a−3 .

(21)

Thus α = 9/2 and β = −3.

(c) The partition function for the system of N particles is

Z =
1

N !
ZN

1 . (22)

The free energy is F = −kbT lnZ = −NkbT (lnZ1/N + 1) using Stirling’s formula,
and hence the entropy is then

S = −
(
∂F

∂T

)
= Nkb

(
ln
Z1

N
+

11

2

)
. (23)

(d) The mean energy of the system is given by

〈E〉 = −
(
∂ lnZ

∂β

)
=

9

2
NkbT . (24)

The equipartition theorem is 〈x∂H/∂x〉 = kbT for x = (px, py, pz, x, y, z). The mo-
menta has the usual result 〈p2

x/m〉 = kbT/2 per particle. The potential term is a bit
more tricky

〈xi
∂H

∂xi
〉 =

ax2
i√

x2 + y2 + z2
(25)

16



where xi = (x, y, z). Then

〈V 〉 = 〈a
√
x2 + y2 + z2〉 = 〈x∂H

∂x
+ y

∂H

∂y
+ z

∂H

∂z
〉 = 3kbT . (26)

Thus the mean energy per partile is

〈E〉 = 3kbT +
3

2
kbT =

9

2
kbT (27)

so the total mean energy of the system is (9/2)NkbT which is the same as above.

(e) In a reversible process S is constant, so from the result of (c), Z1 is constant. And
hence from the result of (b), T 9/2a−3 =constant, or T 9/2 ∝ a3 and hence

T = T0

(
a

a0

)2/3

(28)

i.e. γ = 2/3.
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4) A quantum mechanical system has n possible energy levels, each with energies Ek =
(k2 − 1)∆ for k = 1, 2, 3, . . . , n where ∆ = ~ω has units of energy as usual. Each
energy level exhibits a degeneracy of k2 (i.e. each energy level has k2 quantum states
with different quantum numbers). The system is in thermal equilibrium with a heat
bath of temperature T = 1/kbβ.

(a) A single fermion of spin s = 1/2 is placed in this system (you may call the two
possible quantum states spin-↑ and spin-↓). Show that the partition function for this
system is given by

Zf = 2eβ∆

k=n∑
k=1

k2e−k
2β∆ .

[8 marks] U,P

(b) Two non-interacting and indistinguishable fermions of spin s = 1/2 are placed in
this system. Derive a formula for the total number of microstates as a function of n,
Ω(n). Using your formula, show that for n = 3, Ω(n = 3) = 378.

(Hint : You may find the formula

NCM =
N !

M !(N −M)!
,

useful.)

[8 marks] U

(c) For the system described in (b), what is the most likely microstate the system will
be in at very low temperatures β∆� 1? Justify your answer.

[4 marks] U

(d) N non-interacting and indistinguishable spin s = 0 bosons are placed in this system.
Derive the partition function for this system. Show that in the limit of very high
temperatures β∆� 1, the partition function is

lim
β∆�1

Z → 1

N !

(
k=n∑
k=1

k2

)N

.

In this limit, which microstate, if any, is the most likely microstate for this system?
Argue that this corresponds to the classical limit.

[10 marks] P

FINAL PAGE
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Solution 4

(a) The partition function for a single s = 1/2 fermion is

Z =
k=n∑
k=1

(2s+ 1)k2e−βEk

=
k=n∑
k=1

2k2e−β(k2−1)∆

= 2eβ∆

k=n∑
k=1

k2e−k
2β∆ (29)

(b) Let N be the total number of possible energy “slots” each fermion can occupy. Since
each energy level k has a degeneracy of k2, N is given by

N =
k=n∑
k=1

k2 . (30)

For s = 1/2, each fermion has two possible states, let’s call them ↑ and ↓. Now the
two fermions can either occupy a single slot or two separate slots. If they occupy
a single slot, the occupation is must be ↑↓ by Pauli exclusion principle, and hence
there is a total of N such microstates. If they occupy two separate slots, there are
NC2 ways of choosing two such slots, and for each choice, there are four possibilities
↑↑, ↑↓, ↓↓, ↓↑, for a total of 4× NC2. Thus the total number of microstates is

Ω(n) = N + 4 · NC2.

For n = 3, we get N = 1 + 4 + 9 = 14, and Ω(3) = 14 + 4 · 14!/2!(12!) = 378.

(c) The probability for a fermion to be in the k-th energy level is P = (1/Z)e−β(k2−1)∆,
so for β∆ � 1, the e−k

2β∆ → 1 faster for larger k, so the most likely state is the
k = 1 state. For a 2 fermion system, the most likely microstate is then ↑↓ at the
k = 1 state.

(d) For non-interacting indistinguishable bosons, we can calculate the partition function
for a single boson first which is

Z1 = eβ∆

k=n∑
k=1

k2e−βk
2∆ . (31)

The total partition function is then the N -th product over Z1, divided by N ! (for
indistinguishable particles), we have

Z =
1

N !

∏
N

Z1 =
1

N !
eNβ∆

(
k=n∑
k=1

k2e−βk
2∆

)N

(32)
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In the limit of high temperatures e±β∆ → 1, so we get

lim
β∆�1

Z → 1

N !

(
k=n∑
k=1

k2

)N

. (33)

as required.

In this limit, all the configurations are equally probable, and hence this corresponds
to the classical limit. (Another way of explaining is to note that ~ has vanished from
the final result.)
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